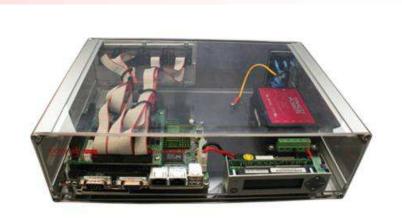


The microIOC Family


Gasper Pajor

gasper.pajor@cosylab.com

EPICS Collaboration Meeting Argonne National Laboratory
June 2006

microIOC - A Quick Overview

- Compact x86 (PC-104) based IOC
- Reliable power supply (55 years MTBF)
- No moving parts (boots from CF)
- 2 Ethernet interfaces
- Number of different I/O extension cards
- Rack mount (19") or desktop (9" or 13") cases

Benefits

- completely stand-alone, no VME/PCI or boot PC
 - Use it where VME would be overkill
- plug&play: connect cables and it works
- standard components and software
- one IOC for integration of wide device spectrum
 - beamlines

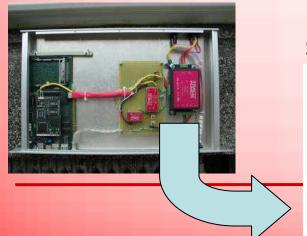
Stand-alone microIOC

- Suitable for EPICS integration of serial devices
 - RS232 (up to 32 ports)
 - R422, RS485 (up to 12 ports)
 - GPIB
- Analog and digital I/O integration
 - several possibilities
- IP devices integration (e.g. PLC)
 - separate device network, no excessive TCP traffic comes to device
- Combination of different I/O interfaces

Stand-alone microIOC

RS 232/422/485

Analog/Digital I/O

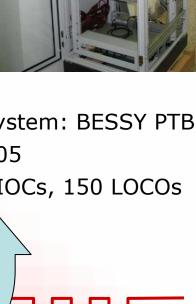


microIOC is Evolving

- microIOC as a platform for CS solutions
- microIOC embedded in instruments/devices or the other way around
- New developments with microIOC in mind

First customer: SLS

In 2003


First mass order: ASP Spring 2005 (25pcs)

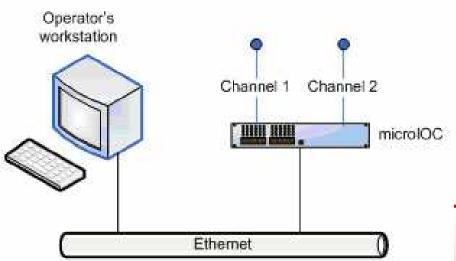
LOCO system: BESSY PTB

Late 2005

2 microIOCs, 150 LOCOs

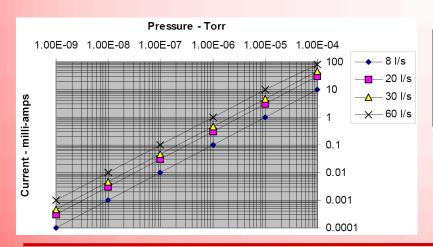
Function Generator

- Arbitrary function generator
- 12, 14 or 16 bit resolution
- Sine and square waveforms up to 15 MHz
- Up to 40Msa/s, up to 109 points arbitrary waveform
- PC Waveform Generator application for waveform preparation and verification

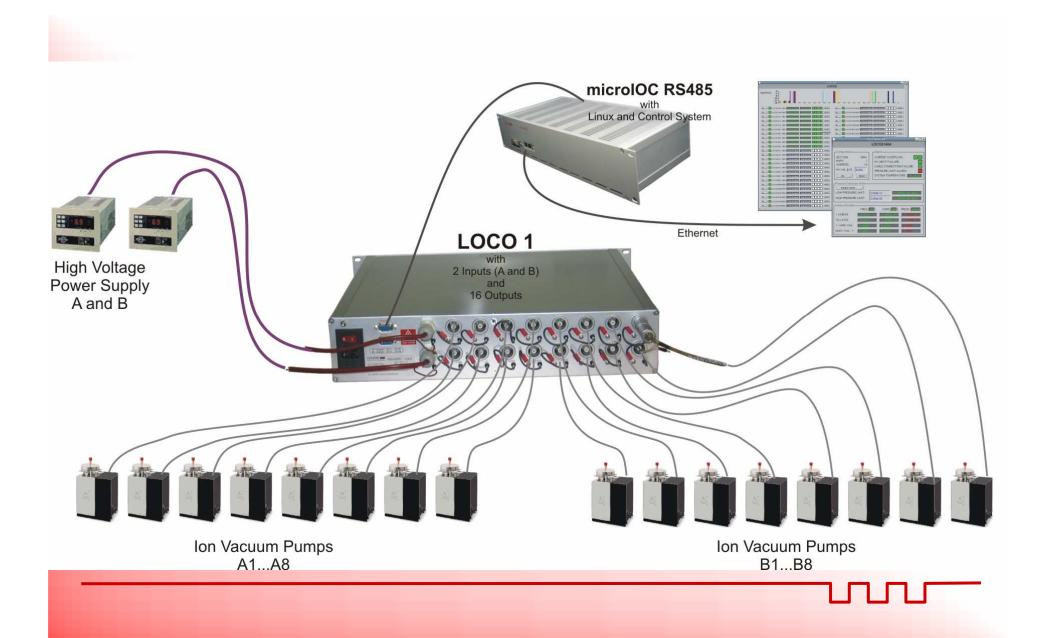


CosyScope

- Observe signals over the network via EPICS
- Distributed signal acquisition
 - signal comparison
 - troubleshooting
- 2 channels per microIOC
- Triggering:
 - Channel threshold
 - External trigger

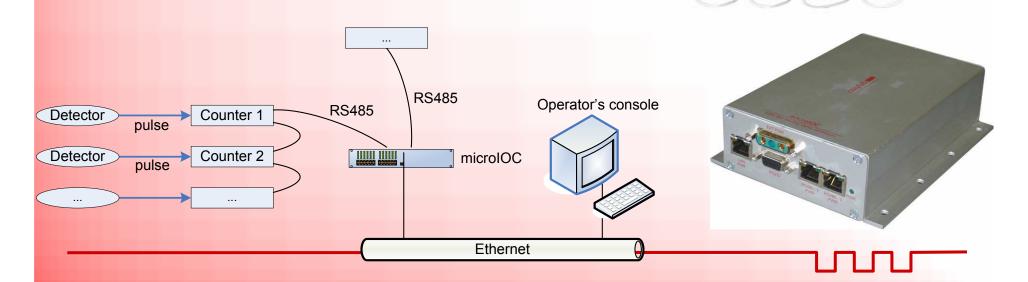

MCS-8 Motor Box


- microIOC controlling 8-axis PMAC motion controller
- EPICS integration
- Rok Sabjan's presentation



LOCO System

- <u>Logarithmic Converter</u>
 - connect several vacuum pumps on single HV power supply
 - read the pressure from each of the pumps
- microIOC for controlling the LOCO boards
 - count -> current -> pressure calculation
 - EPICS interface



Beam Loss Monitor System

- Cosylab counter controller for Bergoz BLM sensor
 - Powered over Ethernet, RS485 or external PS
 - Up to 2 sensors
 - Can be daisy chained

 microIOC with capability of both controlling and powering the counter controller

See the demo in the exhibition hour!

Misc. microIOC News

- Development environment (microIOC sandbox)
 - compiling applications
 - full EPICS support
 - deployment functionality
 - standard linux (debian) tools
 - suitable for integration into larger tool
- Current amplifier
 - current range 100pA to 10mA
 - power over Ethernet or RS485
 - can be daisy chained
- Dual case
 - 2 microIOCs in 19"x2" rackmount case
 - saves space
 - possible redundancy solutions

New Instruments in Integration Phase

- Delay Generator
 - 8 precisely controlled delayed channels
 - 0 to 1s delay
 - 0.5ns pulse width resolution
 - EPICS integration out of the box
 - DG535 alternative
- Bergoz analog electronics
 - AC Current Transformer
 - Log Ratio BPM
 - Multiplexed BPM
 - BPM Analog Front End
 - Beam Charge Monitor
- We are always open to new suggestions

www.cosvlab.com

cosylab CONTROL SYSTEM LABORATORY

microlOC

the cosy dicrection for your control system

